COMPROMISED REDOX REGULATION OF ADAPTIVE HOMEOSTASIS IN AGING
نویسندگان
چکیده
منابع مشابه
Aging alters circadian regulation of redox in Drosophila
Circadian coordination of metabolism, physiology, and neural functions contributes to healthy aging and disease prevention. Clock genes govern the daily rhythmic expression of target genes whose activities underlie such broad physiological parameters as maintenance of redox homeostasis. Previously, we reported that glutathione (GSH) biosynthesis is controlled by the circadian system via effects...
متن کاملRegulation of Cell Transformation by Rb-Controlled Redox Homeostasis
Rb is a tumor suppressor, and regulates various biological progresses, such as cell proliferation, development, metabolism and cell death. In the current study, we show that Rb knockout in 3T3 cells leads to oxidative redox state and low mitochondrial membrane potential by regulating mitochondrial activity. Our results indicate that Rb plays an important role in controlling redox homeostasis. M...
متن کاملEditorial: Redox Regulation in Skeletal Muscle Aging and Exercise
Changes in population demographics have seen an increase in human lifespan coupled with an increase in many age associated disorders that determine quality of life including, sarcopenia, and frailty. Closing the gap between life expectancy and healthy aging has now become a research priority in many countries. Skeletal muscle comprises up to 40% of body mass and the inhibition or delay of the p...
متن کاملRedox regulation in skeletal muscle during contractile activity and aging.
Skeletal muscle has the ability to adapt and remodel after functional, mechanical, and metabolic stresses by activation of different adaptation mechanisms that induce gene expression, biochemical changes, and structural remodeling. Skeletal muscle cells continuously generate reactive oxygen and nitrogen species (RONS), which can act as mediators in cellular signaling pathways that regulate the ...
متن کاملRedox regulation of muscle adaptations to contractile activity and aging
Superoxide and nitric oxide are generated by skeletal muscle, and these species are increased by contractile activity. Mitochondria have long been assumed to play the primary role in generation of superoxide in muscle, but recent studies indicate that, during contractile activity, membrane-localized NADPH oxidase(s) rapidly generate(s) superoxide that plays a role in redox signaling. This proce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Innovation in Aging
سال: 2018
ISSN: 2399-5300
DOI: 10.1093/geroni/igy023.811